1* On a $20-\mathrm{km}$ line, electrified with single-phase AC-current, 1600 t trains are hauled at $100 \mathrm{~km} / \mathrm{h}$ by a Class 185 from DB. We can find a 10 km ramp at 5%. After an important incident on the substation, the power supply of the catenary is not available. The line has to be used provisory with Diesel locomotives. (Leaflets 8.5.13 \& 8.10.23, fig. 4.229).
A How many Class 285 from CBrail are necessary to haul the same trains?
B A question: repair or not repair? Explain choice arguments to the board office.

2* We want to order a serie of megatrolleybus for an urban line. Trolleybus will have 4 axles, 2 motor axles and 2 guiding axles. Continuous power: $2 \times 160 \mathrm{~kW}$. Maximal power: $2 \times 240 \mathrm{~kW}$. (Leaflet 8.6.38 for example).
A Analyze two drives: induction motors and synchronous motors with permanent magnets. Study normal operations, but also disturbance cases: short-circuit on a converter phase, short circuit on a motor phase.
B Compare two mechanic drives: longitudinal motors with hypoid drive and wheelmotors ($4 \times 40 / 120 \mathrm{~kW}$) without axle through the vehicle.

3* After the commissioning of the new transit main station in Zürich (~2011), the ZVV (transport official organisation of region Zürich) wants trains without changes Uetliberg - Zürich HB - Uster. The Uetliberg line is now electrified under $1200 \mathrm{~V}=$ and all the remaining lines of
 at approximately 60 cm over the rail top.
A Choose an electric drive for $1500 \mathrm{~V}=/ 15 \mathrm{kV} \sim$, which can also operate on actual voltage $1200 \mathrm{~V}=$.
B Calculate the power to be installed for an EMU4 with 180 seats and so many standing places. A maximal speed of $140 \mathrm{~km} / \mathrm{h}$ is required, and an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$ until $60 \mathrm{~km} / \mathrm{h}$ on flat line under single-phase voltage. Under DC-voltage, it is required to hold the actual time schedule of the Uetliberg line with a maximal speed of $70 \mathrm{~km} / \mathrm{h}$ (see doc.).
C Study if the articulated configuration Bo' $2^{\prime}-2^{\prime}-2^{\prime}-\mathrm{Bo}^{\prime}$ is relevant, or if more driving wheels have to be installed, for example Bo'-2'-Bo'+ Bo'-2'-Bo'. Is it possible to equip Jacobs-bogies with motors? In this case, where the converters can be installed?

5* It is planned change the voltage on Uetliberg from $1200 \mathrm{~V}=$ to $1500 \mathrm{~V}=$, to have a standard value and reduce the power lost in the catenary. It is planned to buy new trains.
A Explain the impacts on fixed installations: objects to modify, change on operations?
B Explain the impacts on actual rolling stock. Modifications? Scrap?

